Materials

Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility

  • 1.

    Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article 

    Google Scholar
     

  • 2.

    Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. https://doi.org/10.1002/adem.200300567 (2004).

  • 3.

    Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    George, E. P., Raabe, D. & Ritchie, R. O. High entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science https://doi.org/10.1126/science.aas8815 (2018).

  • 7.

    Jo, Y. H. et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. https://doi.org/10.1038/ncomms15719 (2017).

  • 8.

    Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. Solute strengthening in random alloys. Acta Mater. 124, 660–683 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Granberg, F. et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.116.135504 (2016).

  • 10.

    Oh, H. S. et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat. Commun. 10, 2090 (2019).

    Article 

    Google Scholar
     

  • 11.

    Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics https://doi.org/10.1016/j.intermet.2010.05.014 (2010).

  • 12.

    Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics https://doi.org/10.1016/j.intermet.2011.01.004 (2011).

  • 13.

    Maresca, F. & Curtin, W. A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Mater. https://doi.org/10.1016/j.actamat.2019.10.015 (2020).

  • 14.

    Senkov, O. N., Miracle, D. B., Chaput, K. J. & Couzinie, J. P. Development and exploration of refractory high entropy alloys – a review. J. Mater. Res. https://doi.org/10.1557/jmr.2018.153 (2018).

  • 15.

    Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Materialia https://doi.org/10.1016/j.actamat.2016.08.081 (2017).

  • 16.

    Qi, L. & Chrzan, D. C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.112.115503 (2014).

  • 17.

    Peterson, N. L. Diffusion in Refractory Metals WADD Technical Report 60-793 (Wright Air Development Division, 1960).

  • 18.

    Distefano, J. R., Pint, B. A. & Devan, J. H. Oxidation of refractory metals in air and low pressure oxygen gas. Int. J. Refract. Met. Hard Mater. https://doi.org/10.1016/S0263-4368(00)00026-3 (2000).

  • 19.

    Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Huang, H. et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article 

    Google Scholar
     

  • 21.

    Senkov, O. N., Gorsse, S. & Miracle, D. B. High temperature strength of refractory complex concentrated alloys. Acta Mater. https://doi.org/10.1016/j.actamat.2019.06.032 (2019).

  • 22.

    Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1–93 (2014).

    Article 

    Google Scholar
     

  • 23.

    Li, Z., Zhao, S., Ritchie, R. O. & Meyers, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. https://doi.org/10.1016/j.pmatsci.2018.12.003 (2019).

  • 24.

    Cantor, B. Multicomponent and high entropy alloys. Entropy https://doi.org/10.3390/e16094749 (2014).

  • 25.

    Vincent, A. J. B. A Study of Three Multicomponent Alloys. BSc thesis, University of Sussex (1981).

  • 26.

    Knight, P. Multicomponent Alloys. BSc thesis, University of Oxford (1995).

  • 27.

    Argon, A. Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, 2007).

  • 28.

    Gypen, L. A. & Deruyttere, A. Thermally activated deformation in tantalum-base solid solutions. J. Less Common Met. https://doi.org/10.1016/0022-5088(82)90208-9 (1982).

  • 29.

    Hutchinson, J. W. & Neale, K. W. Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall. 25, 839–846 (1977).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Kato, H., Ozu, T., Hashimoto, S. & Miura, S. Cyclic stress-strain response of superelastic Cu-Al-Mn alloy single crystals. Mater. Sci. Eng. A 264, 245–253 (1999).

    Article 

    Google Scholar
     

  • 31.

    Lilensten, L. et al. On the heterogeneous nature of deformation in a strain-transformable beta metastable Ti-V-Cr-Al alloy. Acta Mater. https://doi.org/10.1016/j.actamat.2018.10.003 (2019).

  • 32.

    Melander, A. Work hardening and softening in a dislocation glide plane with precipitates. Mater. Sci. Eng. 34, 235–240 (1978).

    Article 

    Google Scholar
     

  • 33.

    Olfe, J. & Neuhäuser, H. Dislocation groups, multipoles, and friction stresses in α-CuZn alloys. Phys. Status Solidi https://doi.org/10.1002/pssa.2211090115 (1988).

  • 34.

    Li, Q. J., Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. https://doi.org/10.1038/s41467-019-11464-7 (2019).

  • 35.

    Takahashi, A. & Ghoniem, N. M. A computational method for dislocation-precipitate interaction. J. Mech. Phys. Solids https://doi.org/10.1016/j.jmps.2007.08.002 (2008).

  • 36.

    Anderson, P. M., Hirth, J. P. & Lothe, J. Theory of Dislocations 3rd edn (Cambridge University Press, 2017).

  • 37.

    Lai, M. J., Tasan, C. C. & Raabe, D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: dislocation channeling and deformation induced ω-β transformation. Acta Mater. 100, 290–300 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Chen, W. et al. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates. Acta Mater. https://doi.org/10.1016/j.actamat.2019.03.034 (2019).

  • 39.

    Lilensten, L. et al. Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. https://doi.org/10.1016/j.actamat.2017.09.062 (2018).

  • 40.

    Rao, S. I. et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater. https://doi.org/10.1016/j.actamat.2016.12.011 (2017).

  • 41.

    Wang, Y., Li, J., Hamza, A. V. & Barbee, T. W. Ductile crystalline–amorphous nanolaminates. Proc. Natl Acad. Sci. USA 104, 11155–11160 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Gu, X. F., Furuhara, T. & Zhang, W. Z. PTCLab: free and open-source software for calculating phase transformation crystallography. J. Appl. Crystallogr. https://doi.org/10.1107/S1600576716006075 (2016).

  • 43.

    Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773–786 (1968).

    Article 

    Google Scholar
     

  • 44.

    Park, S. C., Beckerman, L. P. & Reed-Hill, R. E. On the Portevin-Le Chatelier effect due to Snoek strain aging in the niobium oxygen system. Metall. Trans. A 14, 463–469 (1983).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Toby, B. H. & von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. https://doi.org/10.1107/S0021889813003531 (2013).

  • 46.

    GOM Correlate (2018).

  • What's your reaction?

    Excited
    0
    Happy
    0
    In Love
    0
    Not Sure
    0
    Silly
    0

    You may also like

    More in:Materials

    Leave a reply

    Your email address will not be published. Required fields are marked *